My M2GARSS 2020 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

MO2.1: Deep Learning I

Session Type: Oral
Time: Monday, March 9, 11:20 - 12:40
Location: Valetta
Session Chair: John Kerekes, Rochester Institute of Technology, USA
 
  MO2.1.1: A NEW CNN-RNN FRAMEWORK FOR REMOTE SENSING IMAGE CAPTIONING
Genc Hoxha, Farid Melgani, Jacopo Slaghenauffi, University of Trento, Italy
 
  MO2.1.2: WHICH CNN LAYER FOR WHICH CHANGE? A CNN ADAPTATION APPROACH FOR CHANGE DETECTION IN REMOTE SENSING DATA
Yacine Slimani, University Ferhat Abbas Setif 1, Algeria; Rachid Hedjam, Sultan Qaboos University, Oman
 
  MO2.1.3: DEEP LEARNING MODELS PERFORMANCE FOR NDVI TIME SERIES PREDICTION: A CASE STUDY ON NORTH WEST TUNISIA
Manel Rhif, Laboratoire RIADI, École Nationale des Sciences de l’Informatique, Manouba, Tunisia; Ali Ben Abbes, Centre d’applications et de Recherches en Télédétection (CARTEL), Université de Sherbrooke, Canada; Beatriz Martinez, Departament de Física de la Terra i Termodinàmica, Universitat de València, Spain; Imed Riadh Farah, Laboratoire RIADI, École Nationale des Sciences de l’Informatique, Manouba, Tunisia
 
  MO2.1.4: TLDCNN: A TRIPLET LOW DIMENSIONAL CONVOLUTIONAL NEURAL NETWORKS FOR HIGH-RESOLUTION REMOTE SENSING IMAGE RETRIEVAL
Yaakoub Boualleg, Mohamed Farah, Imed Riadh Farah, University of Manouba, Tunisia